FREE SPEED STUDY Survey Report 2018

Research Department
December 2018

Contents

- Free-Speed Survey - Overview

Page 3

- Study Objectives Page 3
- Methodology Page 3
- Key Findings Page 3
- Speeding on Urban Roads

Page 4

- Historic speeding rates by years, vehicle type and urban Road - Bar Graph

Page 4

- Percentage of vehicles on urban roads by road type and degree of violation - Bar Graph

Page 5

- Speeding on Rural Roads Page 6
- Historic speeding rates of cars on rural roads - Line Graph Page 6
- Percentage of cars speeding on rural roads by road type and degree of violation - Bar Graph Page 7
- Percentage of vehicles speeding on rural roads by road type
and degree of violation - Bar Graph Page 8
- Percentage of cars speeding on Urban and Rural Roadways - Bar Graph Page 8
- Who's up and who's down: speeding by cars Page 9
- Summary \& Recommendations Page 10-11
- Appendix 1

Page 12-13

- Detailed Tables - Free-Speed by Road Type 2018
- Appendix 2

Page 14-15

- Percentage speeding (Urban) 1999 to 2018
- Appendix 3
- Percentage speeding (Rural) 1999 to 2018
- Appendix 4

Page 18

- Breakdown of sites by road type and speed limit,2018
- Appendix 5

Page 19

- Survey details
- Legal speed limits by vehicle type

Page 20

- Appendix 6

Page 21

- Top 9 locations - Highest volumes
- Lowest 5 locations - Lowest volumes

Free-Speed Survey - Overview

Study Objectives:

To determine the incidence of drivers of all vehicle types driving on Irish roads while speeding, and therefore presenting a road safety risk. Speed surveys are designed to monitor changes in the free speeds of vehicles in both urban and rural areas and to measure drivers' choice of speed. Free speed is defined as the speed at which drivers choose to travel when unconstrained by road geometry (e.g. sharp bends, intersections or hills), weather conditions (e.g. rain) or traffic conditions (e.g. congestion).

Methodology:

In September/October 2018, Nationwide Data Collection conducted an observational study of 16,672 vehicles on behalf of the Road Safety Authority. The surveys took place at the roadside at 90 sites: 38 urban ($60 \mathrm{~km} / \mathrm{h}$ or less speed limit) and 52 rural ($80 \mathrm{~km} / \mathrm{h}$ or more speed limit). Cars (12,240), rigid goods vehicles $(2,316)$, semi-articulated vehicles (1,453), single decker buses (583), double decker buses (37) and Motorcyclists (43) were observed.

Surveys were carried out at the designated locations generally during working hours (8.30am to $5.30 \mathrm{pm})$, Monday to Friday, with some Urban sites surveyed between $05: 30$ to $07: 30$. Only speeds of vehicles that were unconstrained - speeds derived from vehicles with a headway / gap of at least 200 metres on roads where it was possible to exceed the speed limit - were recorded.

The target sample size for surveys on urban national roads was: 140 cars, 90 rigid vehicles and 30 articulated vehicles; no quotas were allocated for buses surveyed. The target sample size for urban residential and urban arterial roads was 140 cars (no buses, rigid or articulated vehicles were surveyed for these roads).

Speeding here is defined as driving at a speed greater than the ordinary speed limit for the particular vehicle on the particular road, e.g. the speed limit for a truck is $90 \mathrm{~km} / \mathrm{h}$ on motorways with a posted speed limit of $120 \mathrm{~km} / \mathrm{h}$ (see Appendix 5).

Key Findings:

- The percentage of car drivers breaking the speed limit on urban roads was 52% (57% in 2016); when residential roads are excluded, this rises to 65% (71% in 2016) for all other urban national roads.
- The percentage of car drivers breaking the speed limit on rural roads was 27% (22% in 2016).
- The percentage of cars speeding on motorways is the same as 2016-23\%.
- The percentage of cars speeding on dual carriageways - 100kph increased from 34\% in 2016 to 44\% in 2018.
- The percentage of cars speeding on regional 80km/h roads increased from 39\% in 2016 to 50\% in 2018.
- \quad Average car free speed:
- $112 \mathrm{~km} / \mathrm{h}$ in $2018 /$, $113 \mathrm{~km} / \mathrm{h}$ on motorways in 2016; posted limit 120
- $100 \mathrm{~km} / \mathrm{h}$ in $2018,96 \mathrm{~km} / \mathrm{h}$ on dual carriageways in 2016; posted limit
- $61 \mathrm{~km} / \mathrm{h}$ in $2018,65 \mathrm{~km} / \mathrm{h}$ on urban arterial roads in 2016; posted limit
- $61 \mathrm{~km} / \mathrm{h}$ in 2018, $57 \mathrm{~km} / \mathrm{h}$ on urban national roads in 2016; posted limit

Speeding on Urban Roads

Of the vehicles surveyed $89 \%(5,268)$ were cars, $6 \%(358)$ were rigid trucks, $3 \%(204)$ were articulated trucks, and $2 \%(93)$ were buses were on urban roads.

- 52% of all cars observed on all urban roads were speeding (57% in 2016);
- 58% of all rigid trucks observed on all urban roads were speeding (55% in 2016);
- 72% of all articulated trucks observed on all urban roads were speeding (55% in 2016);
-68% of all single decker buses observed on all urban roads were speeding (38% in 2016).

At the Urban National $30 \mathrm{~km} / \mathrm{h}$ location, only 3 out of the 140 cars sampled was travelling at or under the $30 \mathrm{~km} / \mathrm{h}$ speed limit.
At one of the Urban Residential locations, a vehicle was recorded travelling at $67 \mathrm{~km} / \mathrm{h}$.

Speeding on Rural Roads

$65 \%(6,972)$ of cars, $18 \%(1,958)$ were rigid trucks, $12 \%(1,249)$ were articulated trucks, and $5 \%(489)$ were buses surveyed were on rural roads.

- 27% of all cars observed on all rural roads were speeding (22% in 2016);
- 41\% of all rigid trucks observed on all rural roads were speeding (36\% in 2016);
- 44\% of all articulated trucks observed on all rural roads were speeding (38% in 2016);
- 3% of all single decker buses observed on all rural roads were speeding (11\% in 2016).

At one Regional site the default speed limit was $50 \mathrm{~km} / \mathrm{h}$, there was 140 observations of cars and 49% of cars were travelling under the speed limit.

WORST OFFENDERS

ONE DRIVER WAS TRAVELLING AT 118KM/H ON AN 80KM/H LOCAL ROAD, WHICH IS 1.5 TIMES OVER THE SPEED LIMIT
30 CARS WERE DRIVING OVER 120KM/H ON DUAL CARRIAGEWAYS 100KM/H WITH THE HIGHEST SPEED RECORDED AT 147KM/H 4 CARS WERE DRIVING OVER 150KM/H ON MOTORWAYS/DUAL CARRIAGEWAY 120KM/H WITH THE HIGHEST SPEED RECORDED AT 168KM/H

Articulated trucks on Dual Carriageways exceeded the speed limit by the greatest margin, with 21% travelling at $11-20 \mathrm{~km} / \mathrm{h}$ over the limit.

Who's up and who's down: Speeding by cars

Historic speeding rates for vehicles and road types can be found in the tables in Appendices 2 and 3 .
The following urban location changes are:

- Urban National - 30km/h is the same as 2016
- Urban National - $50 \mathrm{~km} / \mathrm{h}$ increase by 13%
- Urban residential $-50 \mathrm{~km} / \mathrm{h}$ decreased by 5%
- Urban National - $60 \mathrm{~km} / \mathrm{h}$ increased by 13%
- Urban Arterial - 60km/h decreased by 16%
- Urban Arterial - $50 \mathrm{~km} / \mathrm{h}$ decreased by 22%
- Urban Residential - 30km/h increased by 5\%

The following rural location changes are:

- Motorway $-120 \mathrm{~km} / \mathrm{h}$ is the same as 2016
- Dual Carriageway $-100 \mathrm{~km} / \mathrm{h}$ increased by 10%
- National Primary - 100km/h increased by 9%
- National Secondary - 100km/h increased by 1%
- Regional Roads - $80 \mathrm{~km} / \mathrm{h}$ increased by 11%

Summary \&Recommendations

The Government Road Safety Strategy 2013 - 2020 sets ambitious targets for speed compliance: 'A target of 100% compliance has been set and whilst it is acknowledged it may be difficult to achieve, it is a necessary requirement to support the primary targets of fatality and serious injury reduction in this Strategy'.

Based on the results from the 2018 Free-Speed survey, speeding is an issue on all road types, in all speed limit areas, and across all vehicle types.

However, there are certain areas that are a particular cause for concern. That is

- Drivers in urban $50 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$ areas and
- Larger vehicles (trucks and buses) on rural $100 \mathrm{~km} / \mathrm{h}$ roads

In the event of a collision in these situations, it is other road users (pedestrians, cyclists, motorcyclists, and other drivers) who are at greatest risk of injury or death.

There is a need for continued education of drivers and future drivers about the dangers of speeding in general. While education is one aspect of the drive to reduce speeding to appropriate levels, enforcement continues to play a vital role through the use of the safety camera system.

Within the Road Safety Strategy 2013-2020 there are a number of actions that pertain to the improvement of speed compliance in Ireland, and work is underway in these areas:

Actions 1\&4:These relate to the implementation ofpublic education/awareness campaigns which target the main causal factors for collisions, including speeding, and the improvement of road users' understanding of how and why speed limits are set (RSA).

Action 90/ Action 16 of the Speed Limit Review Report: This relates to researching Intelligent Speed Adaption systems, based on trials and pilot studies (DTTAS/RSA)

Action 72: This relates to the continuation of the outsourcing of the operation of safety cameras (An Garda Síochána)

Action 91: Relates to legislating for, subject to legal advice, and implement the use of average speed cameras at appropriate locations (DTTAS)

Action 114:Relates to the conduct of annual surveys of drivers free speed (RSA)

In relation to Actions 1\&4, communications campaign development should take into account the following:

- Speeding in urban areas places vulnerable road users at greater risk of injury or death;
- Speeding in rural areas puts everyone involved in the collision at greater risk of injury or death because of the higher speeds experienced.

During a Mid-Term Evaluation of the Strategy conducted in 2016 it was acknowledged that focus must be on the main killer behaviours, i.e. the behaviours that have been proven to contribute to fatal collisions on our roads, of which speeding is one. Reducing the number of collisions and casualties caused by these killer behaviours is the single most important means for Ireland to achieve the target on fatalities by 2020.

Interventions to address these killer behaviours must be further developed and enhanced, in particular targeted visible enforcement and harsher penalties for non-compliance. There was universal agreement that resources must be found to equip An Garda Síochána to provide the necessary level of targeted and visible enforcement to reduce the incidence of speeding, drinkdriving, non-seat belt wearing and mobile phone use while driving.

To this end 22 new actions were included, actions 3 and 10 relate to speeding in particular:
3 Recommend that penalties for the following offences be increased: speeding, mobile phone use, non-wearing of seat belts, carrying unrestrained children in a vehicle

10 Review the feasibility of extending the number of $30-\mathrm{km} / \mathrm{h}$ speed limit zones in vulnerable road user (VRU) rich locations (urban city/town centres), in consultation with UK experts on best|practice models in place in the UK and internationally

The European Transport Safety Council(ETSC) has also made a number of recommendations to Member Statesabout speed management, many of which are integrated into the current Road Safety Strategy. These include:

- Enforcement: safety cameras should be introduced, and time-over-distance cameras should be considered
- Penalty points for speeding should be implemented, and there should be increases in points in line with the degree of speed violation
- Intelligent Speed Adaption: member states are encouraged to roll out ISA nationally, and develop digital maps of speed limits
- $30 \mathrm{~km} / \mathrm{h}$ limits in residential areas should be introduced, also in areas with a high volume of vulnerable road users
- There should be a maximum $50 \mathrm{~km} / \mathrm{h}$ speed limit in urban areas.

Appendix 1

Detailed Tables - Free-Speed by Road Type 2018

Cars	Sample No.	No. Speeding	\% Speeding	Avg. Speed (km/h)	Percentile Free Speed	
Road Type - km/h					50th	85th
Urban National - 30	140	137	98\%	46	46	54
Urban National - 50	980	789	81\%	61	61	74
Urban National - 60	420	294	70\%	69	67	85
Urban Arterial - 50	980	584	60\%	54	53	66
Urban Arterial - 60	1120	549	49\%	61	59	72
Residential - 30	508	340	70\%	37	38	48
Residential - 50	1120	57	5\%	36	37	47
Motorways - 120	1120	252	23\%	112	112	123
Dual Carriageways - 100	700	308	44\%	100	99	111
Dual Carriageways - 120	420	53	13\%	108	109	120
National Primary Road - 100	1400	407	29\%	95	95	105
National Secondary Road - 100	1364	117	9\%	84	84	96
Regional Roads - 50	140	69	49\%	50	50	56
Regional Roads - 80	757	376	50\%	80	80	92
Local Roads - 50	140	93	66\%	54	54	61
Local Roads - 80	931	198	21\%	72	72	83

Articulated Trucks	Sample No.	No. Speeding	$\%$ Speeding	Avg. Speed $(\mathrm{km} / \mathrm{h})$	Percentile Free Speed	
Road Type - km / h	134	97	72%	55	54	62
Urban National -50	70	49	70%	70	74	84
Urban National -60	334	28	8%	83	85	90
Motorways - 120 (90)	164	144	88%	86	86	91
Dual Carriageways -100 (80)	164	18	11%	86	86	90
Dual Carriageways -120 (90)	349	284	81%	84	85	88
National Primary Road -100 (80)	125	49	39%	77	80	86
National Secondary Road -100 (80)	12	0	0%	44	45	48
Regional Roads -50	7	0	37%	78	79	86
Regional Roads -80	60	22	37			
Local Roads -50	12	0	0%	44	44	48

Rigid Trucks	Sample No.	No. Speeding	\% Speeding	Avg. Speed (km/h)	Percentile Free Speed	
Road Type - km/h					50th	85th
Urban National - 50	284	156	55\%	51	51	59
Urban National - 60	74	50	68\%	66	66	77
Motorways - 120 (90)	535	86	16\%	84	85	91
Dual Carriageways - 100 (80)	292	232	79\%	85	85	91
Dual Carriageways - 120 (90)	274	87	32\%	89	86	101
National Primary Road - 100 (80)	412	308	75\%	83	84	89
National Secondary Road - 100 (80)	215	62	29\%	74	75	86
Regional Roads - 50	14	2	14\%	46	46	50
Regional Roads - 80	85	15	18\%	74	74	81
Local Roads - 50	45	5	11\%	45	45	49

Single Decker Buses	Sample No.	No. Speeding	\% Speeding	Avg. Speed (km/h)	Percentile Free Speed	
Road Type - km/h					50th	85th
Urban National - 50	60	35	58\%	55	53	67
Urban National - 60	33	28	85\%	73	76	82
Motorways - 120 (100)	169	6	4\%	91	93	99
Dual Carriageways - 100	115	5	4\%	90	90	98
Dual Carriageways - 120 (100)	47	2	4\%	89	90	98
National Primary Road - 100	60	0	0\%	86	87	94
National Secondary Road - 100	64	0	0\%	74	76	82
Regional Roads - 50	8	0	0\%	46	47	49
Regional Roads - 80	16	4	25\%	73	71	81
Local Roads - 80	10	0	0\%	60	61	76

Appendix 2

Percentage speeding (Urban) 1999 to 2018
Urban National - $30 \mathrm{~km} / \mathrm{h}$

Vehicle Class	$\begin{aligned} & 199 \\ & 9 \end{aligned}$	$\begin{aligned} & 200 \\ & 2 \end{aligned}$	$\begin{aligned} & 200 \\ & 3 \end{aligned}$	$\begin{aligned} & 200 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 6 \end{array}$	$\begin{aligned} & 200 \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 8 \end{array}$	$\begin{aligned} & 200 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 201 \\ & 1 \end{aligned}$	$\begin{aligned} & 201 \\ & 2 \end{aligned}$	$\begin{aligned} & 201 \\ & 3 \end{aligned}$	$\begin{aligned} & 201 \\ & 4 \end{aligned}$	$\begin{aligned} & 201 \\ & 5 \end{aligned}$	$\begin{aligned} & 201 \\ & 6 \end{aligned}$	$\begin{aligned} & 201 \\ & 8 \end{aligned}$
Car	-	-	-	-	-	-	-	-	-	-	-	-	99.3	97.8	97.8
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Urban National - $50 \mathrm{~km} / \mathrm{h}$

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	94	97	98	89	82	86	78	83	82	85	82	76	75	68	80.5
Articulate d	89	92	92	89	69	74	68	77	64	78	77	63	66	66	72.4
Rigid	85	85	96	80	77	72	64	73	64	76	73	56	60	66	54.9
S.D.Buses	-	-	-	79	74	80	-	-	-	89	77	61^{*}	44	40	58.3
Motor Cycle	-	-	-	-	88	-	-	-	-	-	100	75^{*}	77^{*}	60	100^{*}

Urban National - $60 \mathrm{~km} / \mathrm{h}$

| Vehicle
 Class | 199
 9 | 200
 2 | 200
 3 | 200
 5 | 200
 6 | 200
 7 | 200
 8 | 200
 9 | 201
 1 | 201
 2 | 201
 3 | 201
 4 | 201
 5 | 201
 6 | 201
 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Car | - | - | - | - | - | - | - | - | - | - | 61 | 46 | 51 | 57 | 70 |
| Articulate
 d | - | - | - | - | - | - | - | - | - | - | 29 | 31^{*} | 32 | 42 | 70 |
| Rigid | - | - | - | - | - | - | - | - | - | - | 32 | 26 | 25 | 39 | 68 |
| S.D.Buses | - | - | - | - | - | - | - | - | - | - | 22 | 34^{*} | 39 | 36 | 85 |
| Motor
 Cycle | - | - | - | - | - | - | - | - | - | - | - | - | 33^{*} | 43^{*} | - |

Urban Arterial - 50km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	99	99	86	91	86	40	70	68	77	74	81	83	84	82	60
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Urban Arterial - 60km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	67	82	75	80	89	32	67	67	72	62	68	70	75	65	49
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Urban Residential - 30km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	-	-	-	-	-	-	-	-	-	-	57	49^{*}	58	62	67
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Urban Residential - 50km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	68	61	36	20	45	23	4	4	9	10	15	17	16	10	5
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

*Small sample size; S.D. Buses = Single Decker Buses

Appendix 3

Percentage Speeding (Rural) 1999 to 2018
Motorway - $120 \mathrm{~km} / \mathrm{h}$

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	29	24	23	15	20	14	15	18	16	15	21	28	21	23	23
Articulate d	81	81	85	94	89	86	91	77	86	85	81	$9 \wedge$	8	8	8
Rigid	74	82	83	88	85	70	83	72	84	78	77	6^{\wedge}	8	16	16
S.D.Buses	-	-	-	100	0	70	87	85	95	94	96	3	3	2	4
Motor Cycle	-	-	-	-	-	-	-	-	-	-	9	7^{*}	19^{*}	0^{*}	25^{*}

Dual Carriageway - 120km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	-	-	-	-	-	-	-	-	-	-	-	-	5	13	13
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	40	74	11
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	44	63	32
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	0	0	4
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	0	0	33^{*}

Dual Carriageway - 100km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	52	43	29	28	30	24	40	35	31	40	28	36	28	34	44
Articulate d	78	70	60	87	69	54	63	69	75	74	76	80	60	59	88
Rigid	65	67	55	78	68	48	59	61	59	69	70	62	58	61	79
S.D.Buses	-	-	-	77	63	77	59	82	76	88	78	88^{*}	70	0	4
Motor Cycle	-	-	-	-	-	-	-	-	-	-	18	20^{*}	17^{*}	66^{*}	100^{*}

National Primary - 100km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	51	44	30	23	27	20	19	23	15	16	19	18	23	20	29
Articulate d	75	74	73	83	87	64	70	67	65	70	71	75	83	68	81
Rigid	66	61	72	76	76	48	57	57	52	53	60	64	54	59	75
S.D.Buses	-	-	-	76	78	71	60	78	44	49	59	69^{*}	71	55	0
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	50^{*}	44^{*}	50^{*}	29^{*}

National Secondary - 100km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	18	16	14	9	13	4	10	8	6	6	9	8	7	8	9
Articulate d	19	37	34	48	58	25	49	41	31	32	37	47	33	0	39
Rigid	27	29	46	30	41	13	28	33	25	21	27	35	21	18	29
S.D.Buses	-	-	-	38	20	16	19	26	15	10	24	29^{*}	25	13	0
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	67^{*}	0	50^{*}	50^{*}

Regional Road - 80km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	-	10	8	63	16	34	34	41	33	34	36	45	41	39	50
Articulate d	-	39	17	45	9	30	21	26	8	2	0	29^{*}	27	31	37
Rigid	-	42	22	45	22	22	14	21	6	10	6	17^{*}	11	19	18
S.D.Buses	-	-	-	9	0	16	0	-	0	15	-	27^{*}	12	18	25
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	50^{*}	-	-

Regional Road - $50 \mathrm{~km} / \mathrm{h}$

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	-	-	-	-	-	-	-	-	-	-	-	-	-	31	49
Articulate d	-	-	-	-	-	-	-	-	-	-	-	-	-	9	0
Rigid	-	-	-	-	-	-	-	-	-	-	-	-	-	20	14
S.D.Buses	-	-	-	-	-	-	-	-	-	-	-	-	-	25	0
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100^{*}

Local Road - 80km/h

Vehicle Class	199 9	200 2	200 3	200 5	200 6	200 7	200 8	200 9	201 1	201 2	201 3	201 4	201 5	201 6	201 8
Car	-	7	10	37	22	30	21	15	15	13	17		24	19	21
Articulate d	-	-	-	-	-	10	5	2	0	0	0		10	7	3
Rigid	-	-	-	-	-	17	10	3	3	1	3		4	3	12
S.D.Buses	-	-	-	-	-	-	5	-	0	0	-		7	0	0
Motor Cycle	-	-	-	-	-	-	-	-	-	-	-	-	20^{*}	20	50^{*}

*Small sample size; S.D. Buses $=$ Single Decker Buses

Appendix 4

Breakdown of sites by road type and speed limit, 2018

Road Type	Speed Limit km / h	Number of Sites	Number of Observations*
Urban Sites	30	1	140
Urban national	50	7	1465
Urban national	60	3	597
Urban national	50	7	980
Arterial	60	8	1120
Arterial	30	4	508
Residential	50	8	1120
Residential	Total	38	5930
	120		
Rural Sites	100	5	2189
Motorway	120	3	1282
Dual Carriageway	100	10	916
Dual Carriageway	100	10	2235
National Primary	50	1	1770
National Secondary	80	6	170
Regional	50	1	918
Regional	80	8	199
Local	Total	52	1063
Local			10742

*All vehicles
** Unable to survey two motorway sites due to on-going roadworks.

Appendix 5

Survey Details

The same sites were chosen as in previous surveys, where the sites were chosen according to the following criteria:

- Long, straight sections of roadway;
- Carriageway of at least seven metres (except for urban residential);
- Sites where speed is relatively unaffected by geometry, traffic, traffic lights, traffic calming measures, junctions, road works or parking;
- Sites where it is feasible to drive faster than the speed limit.

Methodology

Nationwide Data Collection (NDC) on behalf of the Road Safety Authority carried out national surveys in relation to traffic speeds in 2018. Survey results are used to monitor trends, determine the effectiveness of safety initiatives and to inform the on-going review of public policy in relation to road safety.

The methodology developed for and used by the Road Safety Authority in all previous surveys is applied to this survey. Speed surveys are conducted annually at randomly selected sites on the Irish road network to provide an estimate of the speed at which drivers choose to travel. The target population is the entire Irish road network. There were 52 rural road sites and 38 urban road sites surveyed.

On urban arterial roads, speeds were measured between 5.30am and 7.30am. However, in some locations in Dublin, few readings of vehicles were taken after 7.00am, as the traffic conditions could not be described as free-flowing. The speed measurements on all other roads were generally carried out in normal daylight hours (typically between 8.30am and 5.30pm). For national roads, the speeds of cars, rigid and articulated vehicles were recorded separately.

All surveys were carried out in dry conditions. Speed was measured with calibrated radar meters. Surveyors were instructed to choose vehicles in a random manner to avoid bias. Where a cluster of vehicles arrived together, the speed of the first vehicle only was taken. Every effort was made for surveyors to be as inconspicuous as possible. Surveyors had set targets for vehicle classes. They were instructed to continue surveying until either
a. these targets were reached or
b. for a maximum of 2.5 hours, whichever occurred earlier.

Due to low sample sizes, no figures are provided for double decker buses and caution should be taken in the interpretation of results provided for single decker buses, as they are based on very limited sample sizes.

Legal speed limits by vehicle type

Type of Vehicle	Built up Areas	Regional or Local Roads	Ordinary Speed limit on National Roads (Primary or Secondary)	Ordinary Speed limit on a Dual Carriageway	Ordinary Speed limit on a Motorway
Car or Motorcycle	50 $\mathrm{~km} / \mathrm{h}$	$80 \mathrm{~km} / \mathrm{h}$	$100 \mathrm{Km} / \mathrm{h}$	$100 \mathrm{~km} / \mathrm{h}$	$120 \mathrm{~km} / \mathrm{h}$
Bus	50 $\mathrm{~km} / \mathrm{h}$	$80 \mathrm{~km} / \mathrm{h}$	$80 \mathrm{~km} / \mathrm{h}$	$100 \mathrm{~km} / \mathrm{h}$	$100 \mathrm{~km} / \mathrm{h}$
Bus (designed to carry standing passengers)	50 $\mathrm{~km} / \mathrm{h}$	$65 \mathrm{~km} / \mathrm{h}$			
Truck	50 $\mathrm{~km} / \mathrm{h}$	$80 \mathrm{~km} / \mathrm{h}$	$80 \mathrm{~km} / \mathrm{h}$	$80 \mathrm{~km} / \mathrm{h}$	$90 \mathrm{~km} / \mathrm{h}$

Some drivers must obey speed limits for the particular vehicles they drive. If vehicle and road speeds are different, the driver must obey the lower of the two.

Appendix 6

Top 9 locations - Highest Volumes

Site No	Location	Numbers	Time period
DCR06	N18 - East of R462 junction	140 cars	30 mins
ART02	N11-Morehampton Road, Outsdie Sachs Hotel	140 cars	45 mins
ART08	R112 Dodder Park Road, north of Rathfarnham Road	140 cars	
ART14	N11 Stillorgan Road, Flyover at Belfield	140 cars	
DCR01	N18 - West of R462 junction adjacent to westbound carriageway	140 cars	
DCR07	N18 - West of R462 junction adjacent to eastbound carriageway	140 cars	
NNU02	R600-Ballinphelic to Fivemilebridge	140 cars	
NPR06	N22, east of R590/N22 junction	140 cars	
NSU05	N69, east side of Listowel Town	140 cars	

Lowest 5 locations - Lowest volumes

Site No	Location	Numbers	Time period
NNL08	L1530, north of T-Junction	62 Vehicles	2 hours, 30 mins
NNR07	R499, east of Dolla and Silvermines	68 Vehicles	
RES01	Brian Road after junction with Brian Avenue	88 Vehicles	
NNL02	LP111 - Outside farm entrance on eastbound side of the road	90 Vehicles	
NNLO4	LP999 between Sraghmore and Enniskerry at Djouce Woods	100 Vehicles	

Údarás Um Shábháilteacht Ar Bhóithre
Road Safety Authority
Páirc Ghnó Ghleann na Muaidhe, Cnoc an tSabhaircín, Bóthar Bhaile Átha Cliath, Béal an Átha, Co. Mhaigh Eo
Moy Valley Business Park, Primrose Hill, Dublin Road, Ballina, Co. Mayo
locall: 1890506080 fax: (096) 25252 email: info@rsa.ie website: www.rsa.ie

